Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0422522, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939351

RESUMO

The endoplasmic reticulum (ER) stress response is a highly conserved stress-defense mechanism and activates the adaptive unfolded protein response (UPR) to mitigate imbalance. The ER stress-activated signaling pathways can also trigger autophagy to facilitate cellular repair. Bovine viral diarrhea virus (BVDV) utilizes the host cellular ER as the primary site of the life cycle. However, the interplay between cellular ER stress and BVDV replication remains unclear. This report reveals that cytopathic (cp) and noncytopathic (ncp) BVDV have distinct strategies to regulate UPR mechanisms and ER stress-mediated autophagy for their own benefit. Immunoblot analysis revealed that cp and ncp BVDV differentially regulated the abundance of ER chaperone GRP78 for viral replication, while the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α)-activating transcription factor 4 (ATF4) pathway of the UPR was switched on at different stages of infection. Pretreatment with ER stress inducer promoted virion replication, but RNA interference (RNAi) knockdown of ATF4 in BVDV-infected cells significantly attenuated BVDV infectivity titers. More importantly, the effector ATF4 activated by cp BVDV infection translocated into the nucleus to mediate autophagy, but ATF4 was retained in the cytoplasm during ncp BVDV infection. In addition, we found that cp BVDV core protein was localized in the ER to induce ER stress-mediated autophagy. Overall, the potential therapeutic target ATF4 may contribute to the global eradication campaign of BVDV. IMPORTANCE The ER-tropic viruses hijack the host cellular ER as the replication platform of the life cycle, which can lead to strong ER stress. The UPR and related transcriptional cascades triggered by ER stress play a crucial role in viral replication and pathogenesis, but little is known about these underlying mechanisms. Here, we report that cytopathic and noncytopathic BVDV use different strategies to reprogram the cellular UPR and ER stress-mediated autophagy for their own advantage. The cytopathic BVDV unconventionally downregulated the expression level of GRP78, creating perfect conditions for self-replication via the UPR, and the noncytopathic BVDV retained ATF4 in the cytoplasm to provide an advantage for its persistent infection. Our findings provide new insights into exploring how BVDV and other ER-tropic viruses reprogram the UPR signaling pathway in the host cells for replication and reveal the attractive host target ATF4 for new antiviral agents.

2.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142312

RESUMO

Salmonella enterica serovar Infantis (S. Infantis) is an intracellular bacterial pathogen. It is prevalent but resistant to antibiotics. Therefore, the therapeutic effect of antibiotics on Salmonella infection is limited. In this study, we used the piglet diarrhea model and the Caco2 cell model to explore the mechanism of probiotic Lactobacillus johnsonii L531 (L. johnsonii L531) against S. Infantis infection. L. johnsonii L531 attenuated S. Infantis-induced intestinal structural and cellular ultrastructural damage. The expression of NOD pathway-related proteins (NOD1/2, RIP2), autophagy-related key proteins (ATG16L1, IRGM), and endoplasmic reticulum (ER) stress markers (GRP78, IRE1) were increased after S. Infantis infection. Notably, L. johnsonii L531 pretreatment not only inhibited the activation of the above signaling pathways but also played an anti-S. Infantis infection role in accelerating autophagic degradation. However, RIP2 knockdown did not interfere with ER stress and the activation of autophagy induced by S. Infantis in Caco2 cells. Our data suggest that L. johnsonii L531 pretreatment alleviates the intestinal damage caused by S. Infantis by inhibiting NOD activation and regulating ER stress, as well as promoting autophagic degradation.


Assuntos
Estresse do Retículo Endoplasmático , Salmonella enterica , Animais , Antibacterianos , Autofagia , Proteínas Relacionadas à Autofagia , Células CACO-2 , Humanos , Proteínas Serina-Treonina Quinases , Suínos
3.
Vet Sci ; 8(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34941846

RESUMO

Staphylococci are the most common pathogens isolated from skin infections in livestock or companion animals. Antibiotic therapy is the best treatment for infections, but local or systemic use of antimicrobials increases the risk of bacterial resistance. Insects are rich in antimicrobial peptides, which can reduce bacterial resistance and can be used to treat bacterial infections after skin burns. We propose that the use of the darkling beetle (Z. morio) hemolymph to treat skin infections in mice by Staphylococcus haemolyticus is one of the alternatives. Z. morio hemolymph alleviated the increase in wound area temperature in mice with a skin infection, reduced the bacterial load of the wound, and accelerated the wound healing speed significantly. Pathological sections showed that Z. morio hemolymph can significantly reduce inflammatory cell infiltration, and promote skin tissue repair. Real-time fluorescent quantitative polymerase chain reaction (PCR) revealed that the Z. morio hemolymph can significantly reduce the levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine interleukin-8 (IL-8). Our findings suggest that Z. morio antibacterial hemolymph can promote wound contraction, relieve local inflammatory responses and promote wound healing in mice infected with a heat injury, which has a positive therapeutic effect and enormous potential for skin thermal injury.

4.
Front Immunol ; 12: 757909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804044

RESUMO

Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.


Assuntos
Carga Bacteriana , Proteínas de Bactérias/fisiologia , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salmonella enterica/fisiologia , Animais , Apoptose , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Citosol/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Piroptose , Salmonelose Animal/microbiologia , Salmonella enterica/enzimologia , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Suínos , Doenças dos Suínos/microbiologia , Vacúolos/microbiologia
5.
Vet Microbiol ; 259: 109084, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153721

RESUMO

Bovine viral diarrhea virus (BVDV), a major infectious pathogen and is associated with major economic losses and significant impact on animal welfare worldwide. Here, recombinant Erns-LTB protein vaccine containing MF59 adjuvant was prepared and assessed using a mouse model. The recombinant plasmid (pET32a-Erns-LTB) was constructed and transformed into BL21 (DE3) cells to produce Erns-LTB protein. The Erns-LTB protein was formulated with MF59 adjuvant, when delivered intraperitoneally in mice, exhibited higher immunogenic and induced superior levels of anti-BVDV IgG compared with the MF59 adjuvanted Erns protein. Importantly, after challenged with different BVDV BJ175170 and BJ1305 isolate strains, mice inoculated with Erns-LTB protein displayed alleviated pathological damage and decreased plasma virus shedding compared with mice inoculated with Erns protein. The enhanced protection from Erns-LTB protein is mediated by T cell immunity and primarily based on CD4+ T helper (Th) and CD8+ cytotoxic T lymphocyte (CTL), these results suggest that Erns-LTB protein has potential to protect against a broad range of BVDV strains thereby providing a novel direction for developing broadly protective vaccines.


Assuntos
Anticorpos Antivirais/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina/imunologia , Imunização/veterinária , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Citocinas/imunologia , Feminino , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Eliminação de Partículas Virais
6.
Vet Sci ; 7(3)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823867

RESUMO

Escherichia coli (E. coli), a main mastitis-causing pathogen in sows, leads to mammary tissue damage. Here, we explored the effects of Lactobacillus johnsonii L531 on attenuating E. coli-induced inflammatory damage in porcine mammary epithelial cells (PMECs). L. johnsonii L531 pretreatment reduced E. coli adhesion to PMECs by competitive exclusion and the production of inhibitory factors and decreased E. coli-induced destruction of cellular morphology and ultrastructure. E. coli induced activation of NLRP3 inflammasome associated with increased expression of NLRP3, ASC, and cleaved caspase-1, however, L. johnsonii L531 inhibited E. coli-induced activation of NLRP3 inflammasome. Up-regulation of interleukin (Il)-1ß, Il-6, Il-8, Il-18, tumor necrosis factor alpha, and chemokine Cxcl2 expression after E. coli infection was attenuated by L. johnsonii L531. E. coli infection inhibited autophagy, whereas L. johnsonii L531 reversed the inhibitory effect of E. coli on autophagy by decreasing the expression of autophagic receptor SQSTM1/p62 and increasing the expression of autophagy-related proteins ATG5, ATG16L1, and light chain 3 protein by Western blotting analysis. Our findings suggest that L. johnsonii L531 pretreatment restricts NLRP3 inflammasome activity and induces autophagy through promoting ATG5/ATG16L1-mediated autophagy, thereby protecting against E. coli-induced inflammation and cell damage in PMECs.

7.
Vet Res ; 51(1): 26, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093767

RESUMO

Probiotic pretreatment is an effective non-antibiotic strategy for preventing or controlling Salmonella infections. We found that Lactobacillus johnsonii L531, isolated from the colon of a clinically healthy weaned piglet, effectively prevented infection with Salmonella enterica serovar Infantis in a pig model. Newly weaned piglets were intragastrically administered Lactobacillus johnsonii L531 at 1.0 × 1010 CFU/day for 1 week before S. Infantis challenge. Pretreatment with L. johnsonii L531 lessened the severity of diarrhea and ileal inflammation in S. Infantis-infected piglets. Lactobacilli were more abundant in the ileum than jejunum after L. johnsonii L531 pretreatment. Treatment with L. johnsonii L531 reduced the abundance of total bacteria in the ileal mucosa and the production of lipocalin 2 in the jejunum of piglets challenged with Salmonella. Both intestinal morphology and transmission electron microscopy results indicated that L. johnsonii L531 alleviated intestinal tissue damage following S. Infantis challenge, especially in the villus and endoplasmic reticulum (ER). ER stress induced by S. Infantis was attenuated by L. johnsonii L531 treatment. The number of CD4- CCR6+ T cells decreased following S. Infantis challenge, but the percentage of CCR6- IFNγ+ T cells in peripheral blood increased. In intestinal mesenteric lymph nodes, S. Infantis increased the proportion of CCR6+ IFNγ+ T cells, whereas L. johnsonii L531 induced an increase in the proportion of CD4+ CCR6+ T cells in response to S. Infantis infection. Our data thus suggest that L. johnsonii L531 contributes to the maintenance of intestinal homeostasis by modulating T-cell responses and ER stress.


Assuntos
Anti-Inflamatórios/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lactobacillus johnsonii/química , Probióticos/farmacologia , Salmonelose Animal/prevenção & controle , Doenças dos Suínos/prevenção & controle , Linfócitos T/imunologia , Animais , Salmonelose Animal/imunologia , Suínos , Doenças dos Suínos/imunologia
8.
Microorganisms ; 7(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480723

RESUMO

Intestinal pathogenic Escherichia coli (InPEC) is a leading cause of postweaning diarrhea (PWD) in pigs. Here, a total of 455 E. coli strains were isolated from small intestinal content or feces from pigs with PWD in 56 large-scale (>500 sows; 10,000 animals per year) swine farms between 2014 and 2016. The frequency of occurrence of selected virulence factors for InPEC pathotypes was detected in 455 isolates by real-time PCR. Sequence types (STs), pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility profiles of 171 E. coli isolates from 56 swine farms were further determined. The heat-labile enterotoxin (LT) was the most common (61.76%), followed by heat-stable enterotoxin (STb) (33.19%), stx2e (21.54%), STa (15.00%), eae (8.98%), cnf2 (5.71%), stx2 (5.71%), F18 (3.25%), and F4 (2.25%) with rates varying by geographic area and year of isolation. Notably, hybrids of E. coli isolates were potentially more virulent, as some InPEC hybrids (virotype F18:LT:eae:stx2e) can rapidly cause cell death in vitro. Genotypic analysis revealed that the most prominent genotype was ST10 (12.87%). The PFGE patterns were heterogeneous but were not ST or virotype related. A total of 94.15% of isolates were multidrug-resistant, with average resistance rates ranging from 90.05% for nalidixic acid to 2.34% for meropenem. Our investigation contributes to establishing the etiology of diarrhea and developing intervention strategies against E. coli-associated diarrheal disease in the future.

9.
Microorganisms ; 7(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096680

RESUMO

Salmonella is important as both a cause of clinical disease in swine and as a source of food-borne transmission of disease to humans. Lactobacillus and Bacillus are often used as antibiotic substitutes to prevent Salmonella infection. In this study, we evaluated the effects of a select mixture of Lactobacillus johnsonii L531, Bacillus licheniformis BL1721 and Bacillus subtilis BS1715 (LBB-mix) in prevention of Salmonella enterica serovar Infantis infection in a pig model. LBB-mix was orally administered to newly weaned piglets for seven days before S. Infantis challenge. LBB-mix pretreatment ameliorated S. Infantis-induced fever, leukocytosis, growth performance loss, and ileal inflammation. Pre-administration of LBB-mix reduced the number of Salmonella in the feces but increased the number of goblet cells in the ileum. S. Infantis infection resulted in an increase in cell death in the ileum, this increase was attenuated by LBB-mix consumption. Claudin 1 and cleaved caspase-1 expression was decreased in the ileum of pigs challenged with S. Infantis, but not in pigs pretreated with LBB-mix. In conclusion, our data indicate that a select LBB-mix has positive effects on controlling S. Infantis infection via alleviating inflammation and maintaining the intestinal mucosal barrier integrity in pigs.

10.
Vet Microbiol ; 230: 187-194, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827387

RESUMO

In the current study, we screened Lactobacillus strains isolated from the colon of clinically healthy weaned piglets for potential probiotic properties and isolated Lactobacillus. johnsonii L531, which produced high levels of beneficial metabolites (butyric, acetic, and lactic acid) in vitro. We also evaluated the efficacy of this metabolites-producing probiotic in treating Salmonella. Infantis infection. Oral administration of L. johnsonii L531 to newly weaned piglets significantly decreased levels of Salmonella colonization in colonic and jejunal contents, accelerated the clearance of Salmonella in feces after infection, and reduced S. Infantis translocation to the spleen. Pretreatment with SCFAs-promoting probiotic L. johnsonii L531 significantly ameliorated the depletion of SCFAs induced by S. Infantis infection and led to significantly greater weight gain and better feed conversion ratios compared to piglets challenged only with S. Infantis. These data provide further evidence that SCFAs-promoting probiotic L. johnsonii L531 treatment could be a suitable nonantibiotic alternative for controlling Salmonella infection and maintaining metabolic homeostasis, thereby enhancing the gut health of piglets during the critical weaning period.


Assuntos
Ácidos Graxos Voláteis/análise , Intestinos/química , Lactobacillus johnsonii/fisiologia , Interações Microbianas , Probióticos/uso terapêutico , Salmonella enterica/patogenicidade , Administração Oral , Animais , Carga Bacteriana , Translocação Bacteriana , Fezes/microbiologia , Intestinos/microbiologia , Lactobacillus johnsonii/isolamento & purificação , Probióticos/administração & dosagem , Salmonelose Animal/microbiologia , Baço/microbiologia , Suínos/microbiologia , Desmame , Aumento de Peso
11.
Front Microbiol ; 9: 2691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459745

RESUMO

The objective of this study was to characterize the uterine microbiota of dairy cows with clinical and subclinical endometritis and to identify the potential bacterial genera as well as their interactions associated with uterine disease. Uterine flush samples (n = 27) were collected from 13 healthy, 5 subclinical endometritic (SE), and 9 clinical endometritic (CE) cows at 30 days postpartum. Microbial DNA from uterine flush samples was subjected to sequencing of the 16S rRNA gene on the Illumina MiSeq platform. The uterine microbiota of healthy, SE, and CE cows had similarly complex microbial diversity, and shared 293 of 445 operational taxonomic units. However, endometritic and healthy cows could be discriminated by the relative abundance of bacterial genera. In CE cows, the uterine microbiota was characterized by increased abundance of Fusobacterium and unique presence of Trueperella and Peptoniphilus. For SE cows, known intrauterine pathogens were almost absent and the uterine microbiota was characterized by enrichment of Lactobacillus and Acinetobacter. Analysis of correlations between bacterial genera showed that the uterine microbiota exhibited two co-occurrence groups (i.e., the Lactococcus and the Fusobacterium COGs), indicating that the synergistic effect by co-occurred bacteria may be an important aspect of pathogenesis. Our findings support that common uterine pathogens are not associated with subclinical endometritis at 30 days postpartum and indicate the need of investigating the role of commensal bacteria such as Lactobacillus, and Acinetobacter in the inflammatory process of uterine endometrium.

12.
Microorganisms ; 6(4)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486231

RESUMO

Salmonella can cause enteric diseases in humans and a wide range of animals, and even outbreaks of foodborne illness. The aim of this study was to investigate the frequency and distribution of serovars, and antimicrobial resistance in Salmonella isolates from pigs with diarrhea in 26 provinces in China from 2014 to 2016. A total of 104 Salmonella isolates were identified and the dominant serovar was S. 4,[5],12:i:- (53.9%). All Salmonella isolates were resistant to trimethoprim-sulfamethoxazole, and many were resistant to ampicillin (80.8%) and tetracycline (76.9%). Among 104 Salmonella isolates, aac(6')-Ib-cr was the dominant plasmid-mediated quinolone resistance gene (80.8%), followed by qnrS (47.1%). The pulsed-field gel electrophoresis results suggest that the Salmonella isolates from different regions were genetically diverse, and ST34 was the most prevalent. S. 4,[5],12:i:- isolates is the widespread presence of heavy metal tolerance genes. The fact that the same sequence types were found in different regions and the high similarity coefficient of S. 4,[5],12:i:- isolates from different regions indicate the clonal expansion of the isolates, and the isolates carried various antimicrobial resistance genes. The multidrug resistant Salmonella can be widely detected in pigs, which will present a challenge for farm husbandry.

13.
Front Microbiol ; 9: 1661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087667

RESUMO

Escherichia coli is a common cause of mastitis in dairy cows. The adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) synergizes with caspase-1 to regulate inflammasome activation during pathogen infection. Here, the ASC gene was knocked out in bovine mammary epithelial (MAC-T) cells using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas)-9 technology. MAC-T cells were pre-incubated with and without Lactobacillus rhamnosus GR-1 and then exposed to E. coli. Western blot analysis demonstrated increased expression of NLRP3 and NLRC4 following E. coli infection, but this increase was attenuated by pre-incubation with L. rhamnosus GR-1, regardless of ASC knockout. Western blot and immunofluorescence analyses revealed that pre-incubation with L. rhamnosus GR-1 decreased E. coli-induced caspase-1 activation at 6 h after E. coli infection, as also observed in ASC-knockout MAC-T cells. The E. coli-induced increase in caspase-4 mRNA expression was inhibited by pre-incubation with L. rhamnosus GR-1. ASC knockout diminished, but did not completely prevent, increased production of IL-1ß and IL-18 and cell pyroptosis associated with E. coli infection, whereas pre-incubation with L. rhamnosus GR-1 inhibited this increase. Our data indicate that L. rhamnosus GR-1 suppresses activation of ASC-dependent NLRP3 and NLRC4 inflammasomes and production of downstream IL-lß and IL-18 during E. coli infection. L. rhamnosus GR-1 also inhibited E. coli-induced cell pyroptosis, in part through attenuation of NLRC4 and non-canonical caspase-4 activation independently of ASC.

14.
Vet Microbiol ; 210: 91-100, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29103703

RESUMO

In this study, we investigated the effect of Lactobacillus rhamnosus GG strain (LGG) in ameliorating enteritis in newly weaned pigs following challenge with a monophasic variant of Salmonella enterica serovar Typhimurium (serotyped as 4,[5],12:i:-), which has been linked to disease in humans and livestocks over the past 10 years. In weaned pigs, S. enterica serovar 4,[5],12:i:- induced the mRNA expression of toll like receptor (TLR) 5 and TLR4, while increasing interleukin (IL)-8 and IL-6 mRNA expression in the jejunum. The monophasic variant Salmonella stimulated the expression of nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) mRNA in the ileum, which was accompanied by phosphorylation of IκB-α, an inhibitor of NF-κB, activating the NF-κB pathway and promoting the release of inflammatory cytokines. Oral administration of LGG attenuated the Salmonella-induced increases in the expression of NOD1 mRNA of jejunal and ileal tissues. LGG promoted the secretion of immunoglobulin A in different intestinal segments but did not induce expression of polymeric immunoglobulin receptor. LGG also impeded the activation of the Nod-like receptor protein (NLRP) 6/apoptosis-associated speck-like protein/caspase-1 inflammasome and decreased the production of IL-18 in the ileum during Salmonella infection. In contrast, activation of the NLRP3 inflammasome was not altered. Our data indicate that LGG accelerated the clearance of Salmonella in the early phase of infection and prevented the excessive inflammatory responses in S. enterica serovar 4,[5],12:i:- model. LGG ameliorates inflammation induced by infection with the monophasic variant Salmonella via inhibition of the canonical NF-κB pathway and attenuation of the NLRP6-mediated inflammasome in the intestine.


Assuntos
Anti-Inflamatórios/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lacticaseibacillus rhamnosus/imunologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/imunologia , Animais , Citocinas/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Suínos
15.
Artigo em Inglês | MEDLINE | ID: mdl-28770173

RESUMO

The high rate of Salmonella enterica serovar Infantis (S. Infantis) infection poses significant risk for the development of non-typhoidal Salmonella gastroenteritis. However, efficient strategies to prevent or treat the infection remain elusive. Here, we explored the effect of the probiotic Lactobacillus rhamnosus GG (LGG) administration in preventing S. Infantis infection in a pig model. Probiotic LGG (1.0 × 1010 CFU/day) was orally administered to newly weaned piglets for 1 week before S. Infantis challenge. LGG pretreatment reduced the severity of diarrhea and alleviated intestinal inflammation caused by S. Infantis. Pre-administration of LGG excluded Salmonella from colonization of the jejunal mucosa but increased the abundance of Bifidobacterium in the feces. LGG promoted the expansion of CD4+ T-bet+ IFNγ+ T cells but attenuated S. Infantis-induced increases in the percentage of CD4+ IFNγ+ T cells and serum interleukin (IL)-22 levels in peripheral blood after S. Infantis challenge. In the small intestine, LGG pretreatment upregulated expression of the transcription factor T-bet but downregulated the S. Infantis-induced increase of CD4+ IFNγ+ T cells in Peyer's patches and IL-7Rα expression in the jejunum. Notably, LGG-treated pigs had enhanced expression of IL-22 and activated STAT3 in the ileum in response to S. Infantis infection. Pretreatment of pigs with LGG also elevated intestinal IL-22-binding protein production in response to S. Infantis challenge. In contrast, LGG consumption reduced the S. Infantis-induced increase in the number of CCL20-expressing cells in the jejunum. Our results suggest that the mechanism by which LGG ameliorates the intestinal inflammation caused by S. Infantis involves the upregulation of T-bet, activation of STAT3, and downregulation of CCL20.


Assuntos
Gastroenterite/prevenção & controle , Interleucinas/metabolismo , Lacticaseibacillus rhamnosus/imunologia , Probióticos/administração & dosagem , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonelose Animal/prevenção & controle , Administração Oral , Animais , Modelos Animais de Doenças , Fezes/microbiologia , Gastroenterite/patologia , Gastroenterite/terapia , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Salmonelose Animal/patologia , Salmonelose Animal/terapia , Suínos
16.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881419

RESUMO

Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4+ ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4+ ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4+ ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4+ ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis. IMPORTANCE: The present study is important for improving our understanding of the protective role of probiotics against Escherichia coli infection in piglets. Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. In this study, low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to MUC4-resistant piglets for 1 week before the F4-expressing ETEC strain (F4+ ETEC) challenge. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis.


Assuntos
Infecções por Escherichia coli/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Probióticos/administração & dosagem , Doenças dos Suínos/imunologia , Administração Oral , Ração Animal/análise , Animais , Bacillus licheniformis/química , Bacillus subtilis/química , Dieta/veterinária , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Genótipo , Masculino , Mucina-4/genética , Sus scrofa/genética , Suínos , Doenças dos Suínos/microbiologia
17.
Front Microbiol ; 8: 2705, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29403451

RESUMO

Salmonella enterica serovar Infantis (S. Infantis) is a common source of foodborne gastroenteritis worldwide. Here, Lactobacillus rhamnosus GG (LGG) was administrated to weaned piglets for 1 week before S. Infantis challenge. S. Infantis caused decreased ileal mucosal microbiota diversity, a dramatic Lactobacillus amylovorus bloom, and decreased abundance of Arsenicicoccus, Janibacter, Kocuria, Nocardioides, Devosia, Paracoccus, Psychrobacter, and Weissella. The beneficial effect of LGG correlated with the moderate expansion of L. amylovorus, L. agilis, and several members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. S. Infantis translocation to the liver was decreased in the LGG-pretreated piglets. An in vitro model of LGG and S. Infantis co-incubation (involving the porcine intestinal epithelial cell line IPEC-J2) was established, and nalidixic acid was used to kill the extracellular S. Infantis. LGG suppressed the initial S. Infantis invasion in the IPEC-J2 cells and deceased the rate of cell death. LGG inhibited S. Infantis-induced autophagy and promoted epidermal growth factor receptor (EGFR) and Akt phosphorylation in both the ileum and IPEC-J2 cells. Our findings suggest that LGG inhibited S. Infantis-induced autophagy by promoting EGFR-mediated activation of the negative mediator Akt, which, in turn, suppressed intestinal epithelial cell death and thus restricted systemic S. Infantis infection. LGG can restore the gut microbiota balance and preserve the autophagy-related intestinal epithelial barrier, thereby controlling infections.

18.
Vet Res ; 47(1): 71, 2016 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-27424033

RESUMO

Efficient strategies for treating enteritis caused by F4(+) enterotoxigenic Escherichia coli (ETEC)/verocytotoxigenic Escherichia coli (VTEC)/enteropathogenic E. coli (EPEC) in mucin 4 resistant (MUC4 RR; supposed to be F4ab/ac receptor-negative [F4ab/acR(-)]) pigs remain elusive. A low (3.9 × 10(8) CFU/day) or high (7.8 × 10(8) CFU/day) dose of Bacillus licheniformis and Bacillus subtilis spore mixture (BLS-mix) was orally administered to MUC4 RR piglets for 1 week before F4(+) ETEC/VTEC/EPEC challenge. Orally fed BLS-mix upregulated the expression of TLR4, NOD2, iNOS, IL-8, and IL-22 mRNAs in the small intestine of pigs challenged with E. coli. Expression of chemokine CCL28 and its receptor CCR10 mRNAs was upregulated in the jejunum of pigs pretreated with high-dose BLS-mix. Low-dose BLS-mix pretreatment induced an increase in the proportion of peripheral blood CD4(-)CD8(-) T-cell subpopulations and high-dose BLS-mix induced the expansion of CD4(-)CD8(-) T cells in the inflamed intestine. Immunostaining revealed that considerable IL-7Rα-expressing cells accumulated at the lamina propria of the inflamed intestines after E. coli challenge, even in pigs pretreated with either low- or high-dose BLS-mix, although Western blot analysis of IL-7Rα expression in the intestinal mucosa did not show any change. Our data indicate that oral administration of the probiotic BLS-mix partially ameliorates E. coli-induced enteritis through facilitating upregulation of intestinal IL-22 and IκBα expression, and preventing loss of intestinal epithelial barrier integrity via elevating ZO-1 expression. However, IL-22 also elicits an inflammatory response in inflamed intestines as a result of infection with enteropathogenic bacteria.


Assuntos
Bacillus/imunologia , Infecções por Escherichia coli/veterinária , Intestinos/imunologia , Probióticos/uso terapêutico , Doenças dos Suínos/imunologia , Linfócitos T/imunologia , Animais , Contagem de Linfócito CD4/veterinária , Linfócitos T CD8-Positivos/imunologia , Resistência à Doença/imunologia , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Feminino , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Inibidor de NF-kappaB alfa/metabolismo , Suínos , Doenças dos Suínos/microbiologia
19.
Appl Environ Microbiol ; 82(4): 1173-1182, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655757

RESUMO

Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1ß (IL-1ß), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/veterinária , Inflamassomos/metabolismo , Inflamação/patologia , Lacticaseibacillus rhamnosus/imunologia , Animais , Western Blotting , Bovinos , Células Cultivadas , Citocinas/metabolismo , Infecções por Escherichia coli/patologia , Imunofluorescência , Perfilação da Expressão Gênica , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Probióticos/farmacologia
20.
Vet Res ; 46: 95, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384321

RESUMO

Although breeding of F4 receptor - negative (F4R(-)) pigs may prevent post-weaning diarrhea, the underlying immunity is poorly understood. Here, various doses of a Bacillus licheniformis and Bacillus subtilis mixture (BLS-mix) were orally administered to F4ab/acR(-) pigs for 1 week before F4 (K88) - positive ETEC/VTEC/EPEC challenge. Administration of BLS-mix increased the percentage of Foxp3(-)IL-10(+) T cells but not of Foxp3(+)IL-10(+) regulatory T (Treg) cells among peripheral blood CD4(+) T cells. A low dose of BLS-mix feeding resulted in increased the expression of IL-6, TNF-α, IL-10, and the transcription factors Foxp3 and T-bet mRNAs in the jejunum. Administration of either a low or high dose BLS-mix also led to an increase in the percentage of CD4(+)Foxp3(+) Treg cells among intraepithelial lymphocytes and CD4(+)IL-10(+) T cells in the small intestinal Peyer's patches and the lamina propria of F4ab/acR(-) pigs following F4(+) ETEC/VTEC/EPEC challenge. The increased number of IL-10-producing CD4(+) T cells was attributed to an increase in the proportion of Foxp3(-)IL-10(+) Treg cells rather than Foxp3(+)IL-10(+) Treg cells. Our data indicate that oral administration of BLS-mix to newly weaned F4ab/acR(-) pigs ameliorates enteritis in an F4(+) ETEC/VTEC/EPEC model; however, induction of IL-10-producing Foxp3(-) Treg cells by BLS-mix administration cannot account for the protection of newly weaned F4ab/acR(-) pigs from F4(+) ETEC/VTEC/EPEC infection, and that excessive generation of CD4(+)IL-10(+) T cells following consumption of BLS-mix during episodes of intestinal inflammation that is caused by enteric pathogens might prohibit clearance of the pathogen. Select probiotic mixtures may allow for tailoring strategies to prevent infectious diseases.


Assuntos
Bacillus/química , Infecções por Escherichia coli/veterinária , Escherichia coli/fisiologia , Probióticos/administração & dosagem , Doenças dos Suínos/terapia , Linfócitos T Reguladores/imunologia , Administração Oral , Animais , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Feminino , Intestino Delgado/imunologia , Masculino , Escherichia coli Shiga Toxigênica/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Linfócitos T Reguladores/metabolismo , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...